

Table Of Content

CHAPTER 1 – INTRODUCTION	4
1.1 — About the <i>ElNet Energy</i> & Power Multimeter	4
1.2 — How to use this manual	5
1.3 — Safety Information	7
1.4 — Warranty	8
1.5 — Your comments are welcome	9
1.6 — Disclaimer1	0
CHAPTER 2 — INSTALLATION1	2
2.1 — Contents of packaging 1	2
2.2 — Mechanical mounting 1	4
2.3 — Wiring Schematics1	5
2.4 — Connections1	.6
CHAPTER 3 — USING THE ElNet Energy & Power Multimeter1	9
3.1 — Front Panel 1	9
3.2 — Control Buttons	24
CHAPTER 4 — PARAMETER CONFIGURATION & SETTINGS	6
4.1 — Settings for Current Transformer 2	27
4.2 — Phase Order Check 2	29

4.3 — Clock Settings
4.4 — Date Settings
4.5 — Filter Settings
4.6 — Reset Energy Values
CHAPTER 5 — Text Panel Displays
5.1 — Current
5.2 — Current in Neurtal Line41
5.3 — Voltage
5.4 — Active Power (P)43
5.5 — Reactive Power (Q)45
5.6 — Apparent Power (S) 46
5.7 — Overall Power Factor and PF for each Phase 47
5.8 — Frequency
5.9 — Active Energy 50
5.10 — Reactive Energy 51
5.11 — Apparent Energy53
5.12 — Harmonics
5.12.1.— Voltage Total Harmonic Distortion (THD).55
5.12.2.— Current Iotal Harmonic Distortion (1HD)50 5.12.3 — Voltage Harmonics 57
5.12.5.— Voltage Harmonics
CHAPTER 6 — Communications60
MODBUS Protocol

6.1 — MODBUS Framing60
6.1.1.— RTU Transmission Mode60
6.1.2 — The RTU Frame Format
6.1.3 — Address Field62
6.1.4 — Function Field62
6.1.5 — Data Field63
6.1.6 — Check Field63
6.2 — Registers for <i>ElNet</i> Energy & Power Multimeter.63
6.3 — Communication Connections
6 4 — Communication Settings70
6.4.1 — Address70
6.4.2 — Baud Rate72
6.4 3 — Parity74
6.4.4 — Stop Bit76
CHAPTER 7 — Specifications
Appendix A — Installation & Configuration Check List79
Appendix B — List of Illustrations & Tables 80
<i>INDEX</i>

CHAPTER 1 – INTRODUCTION

1.1 — About the *ElNet Energy & Power Multimeter*

All large consumers of electricity e.g. Factories, Hotels, Hospitals, Municipalities, need to know the history of their consumption and the quality of the power supply. Details such as Voltage, Current, Power Factor, Hertz, Neutral Current, Harmonics, Energy Demands and all electricity related events are recorded in the *ElNet Energy & Power Multimeter*. These are all recorded on a continual basis and can be recalled and shown on the front panel TEXT display of the instrument with a few simple key-strokes any time the user wishes.

The *ElNet Energy & Power Multimeter* is a compact unit, installs onto a standard DIN Rail, and is especially designed to integrate into Building Management Systems.

The Configuration and Setup is menu driven.

Communication with external devices is simple and based on standard known technology.

The *ElNet Energy & Power Multimeter* boasts a new innovative built in "Flash Memory", which pioneers a new frontier into electrical measurement. It has a 1 MB of ROM with a capacity of recording up to 2 years of unusual events.

Readings & history are shown on a 2 X 16 Text Liquid Crystal display.

Each *ElNet Energy & Power Multimeter* is carefully and meticulously manufactured using quality components and the latest production methods. Before leaving the factory each *ElNet Energy & Power Multimeter* is calibrated and sent to the customer accompanied by the test certificate and Certificate Of Compliance (C.O.C).

1.2 — How to use this manual

We at CONTROL APPLICATIONS Ltd, envisage this manual to be used by three types of people, i.e. the *Installation Technician*, the *Senior Electrical Engineer* and the end *User*. For this reason this manual is divided into chapters for ease of reference by each of these different people. There could be a situation where two of the abovementioned tasks can be combined, or in a rare instance one person could handle all three tasks.

CHAPTER 1, *Introduction*, describes the *ElNet Energy & Power Multimeter*, its potential users, the readings it can provide and some of its features in brief.

CHAPTER 2, *Installation*, provides detailed instructions for unpacking, mechanical mounting, and electrical wiring up instructions for the *Installation Technician*.

CHAPTER 1 — Introduction

CHAPTER 3, Using the **ElNet** Energy & Power Multimeter, describes in detail the front Panel, functions of the control buttons.

CHAPTER 4, *PARAMETER CONFIGURATION & SETTINGS* explains in detail the minimum parameters settings needed by the *Senior Electrical Engineer* to set up and configure the *ElNet Energy & Power Multimeter*

CHAPTER 5, *Front Panel Displays*, is an easy to follow step-bystep guide to obtain readings, and histories for the *User*.

CHAPTER 6, *Communications* gives details about the Communication capabilities of the *ElNet Energy & Power Multimeter*, and how to Set Up

CHAPTER 7, *Specifications*, is a detailed list of specifications of the *ElNet Energy & Power Multimeter*.

APPENDIX A, *Installation & Configuration Check List*, provides a Check List to insure no important steps will be missed during the initial set up.

APPENDIX B, *List of Illustrations & Tables*, shows a list of the illustrations and Tables.

INDEX, An *INDEX* is provided to help find a word or a topic easily.

1.3 — Safety Information

The purpose of this manual is to help you. Please read the instructions carefully before performing any installation and note any precautions.

WARNING!

- Ensure that all incoming AC power and other power sources are turned off before performing any work on the *ElNet Energy & Power Multimeter.* Failure to do so may result in serious or even fatal injury and/or equipment damage.
- If the *ElNet Energy & Power Multimeter* is damaged in any way do <u>NOT</u> connect it to any power source.
- To prevent a potential fire or shock hazard, never expose the *ElNet Energy & Power Multimeter* to rain or moisture.
- Keep the surrounding area free of dirt and clutter especially metal objects. Good housekeeping pays.
- Inspect the cables periodically for cracks, kinks or any other signs of wear
- Keep children away.
- Do not pull the cords.
- Users should stay alert and not approach the rear of the *ElNet Energy & Power Multimeter* while tired or under the influence of alcohol, medicines or any other

CHAPTER 1 — Introduction

chemical substance that would tend to make a person drowsy.

- Do not wear loose clothing or dangling jewelry.
- Above all use common sense at all times.

1.4 — Warranty

CONTROL APPLICATIONS Ltd provides a 12- Month warranty against faulty workmanship or components from date of dispatch provided that the product was properly installed and used.

CONTROL APPLICATIONS Ltd does not accept liability for any damage that may be caused by natural disasters (such as floods, fire, earthquake, lightening etc.).

CONTROL APPLICATIONS Ltd does not accept liability for any damage that may be caused by malfunction of the *ElNet Energy* & *Power Multimeter*

CONTROL APPLICATIONS Ltd will advise the customer on the proper installation and use of the *ElNet Energy & Power Multimeter*, but will not accept any responsibility that the instrument is suitable for the application for which it was originally purchased.

This warranty may become void if the installation, parameter configuration & setting instructions are not carried out according to the instructions set out by CONTROL APPLICATIONS Ltd

The *ElNet Energy & Power Multimeter* has no user serviceable parts and should be opened and serviced by a duly qualified authorized representative only. The sensitive electronics could be damaged if exposed to a static environment. This action would void the warranty.

This warranty is limited to the repair and/or replacement at CONTROL APPLICATION Ltd sole discretion of the defective product during the warranty period. Repaired or replaced products are warranted for ninety (90) days from the date of repair or replacement, or for the remainder of the original product's warranty period, whichever is longer.

CONTROL APPLICATIONS Ltd is always at your service to advise the customer on any problem that may be encountered regarding any installation, operation, parameter & configuration settings or maintenance.

1.5 — Your comments are welcome

CONTROL APPLICATIONS Ltd. Sincerely thank you for choosing our *ElNet Energy & Power Multimeter*. We are confident that it will provide you with many years of trouble free service and give you all the power and energy information and history that you expected from the instrument when you bought it.

CHAPTER 1 — Introduction

While every effort was made to keep the information as reliable, helpful, accurate and up to date as possible, all possible contingencies cannot be covered. Technical or typographical errors could occur, and we would be happy to receive any comments criticisms or notifications of any such errors from you, our valued customer.

Street Address:	24A HaBarzel St.
	Tel-Aviv 69710
	Israel
	Tel: 972-3-647-4998
	Fax: 972-3-647-4598
Electronic Address:	cal@ddc.co.il

1.6 — Disclaimer

Information in this User Manual is subject to change without notice and does not represent a commitment on the part of CONTROL APPLICATIONS Ltd.

CONTROL APPLICATIONS Ltd supplies this User Manual as is without warranty of any kind, either expressed or implied, and reserves the right to make improvements and/or changes in the manual or the product at any time.

CHAPTER 1 — Introduction

While it is the intension of CONTROL APPLICATIONS Ltd to supply the customer with accurate and reliable information in this User Manual, CONTROL APPLICATIONS Ltd assumes no responsibility for its use, or for any infringement of rights of the fourth parties which may result from its use.

This User Manual could contain technical or typographical errors and changes are periodically made to the information herein; these changes may be incorporated in new editions of the publication.

CHAPTER 2 — INSTALLATION

In this Chapter you will find the information and instructions that the *Installation Technician* needs to mount and connect the *ELNet Energy & Power Multimeter*

WARNING!

- During operation, hazardous voltages are present in connecting cables and terminal blocks.
- Fully qualified personnel must do all work. Failure to follow this rule may result in serious or even fatal injury to personnel and/or damage to equipment.
- Refer to Section 1.3 Safety information before carrying out any installation.
- Read this manual thoroughly and make sure you understand the contents before connecting the *ElNet Energy & Power Multimeter* to any power source

2.1 — Contents of packaging

To unpack the *ElNet* Energy & Power Multimeter

The *ElNet Energy & Power Multimeter* is packed and shipped in a carton approximately 18.5 cm long X 10.5 cm wide and 7 cm high.

CHAPTER 2 — Installation

Before opening the package, ensure the area is static free clean and dry.

Without using any sharp instruments, carefully open the carton of the *ElNet Energy & Power Multimeter*.

Please check the contents of the carton, it should contain:-

- 1. Your new *ElNet* Energy & Power Multimeter.
- 2. *ElNet* **TEXT** User Manual (This book).
- 3. Test Certificate and Certificate of Compliance (C.O.C).
- 4. 4 X two pole connector plugs
- 5. 2 X three pole connector plugs
- 6. 1 X Four pole connector plugs

2.2 — Mechanical mounting

Do not mount the *ElNet* Energy & Power *Multimeter* too close to any main electrical conductors.

Allow sufficient space to carry out maintenance to the *ElNet Energy & Power Multimeter*

The *ElNet Energy & Power Multimeter* is manufactured with a standard DIN rail mounting. To mount, simply choose a suitable location and click into position.

Figure 2-1. Mount onto DIN Rail

2.3 — Wiring Schematics

ElNet **TEXT** *Energy & Power Multimeter* Page 15

2.4 — Connections

A future planned option the *ElNet* Energy & Power Multimeter will be the ability to measure electrical properties for <u>two</u> separate electrical systems. The only restrictions envisaged will be physical and geographical constraints

To connect the *ElNet* Energy & Power Multimeter

All Connections, except those to the CT core of the *ElNet Energy* & *Power Multimeter* are made via terminal connector plugs (Voltage input, Power Supply, earth/ground etc.).

Recommended max. tightening torque for the connector screws is 0.5 Nm

The CT cores of the *ElNet Energy & Power Multimeter* are located externally on the front of the instrument and the lead from the leg of the external Current Transformer <u>must</u> pass through in the <u>correct</u> direction.

NOTE!

Ensure all the connections to the leads of the current transformer wiring is secure and there is no mechanical strain on the wire

Insert the lead from side "L" of the Current Transformers of Line 1 through the <u>top</u> of the CT core I1A, of the *ElNet Energy & Power Multimeter*.

NOTE!

- Ensure the leads from leg "L" of the Current Transformer on Line 1 passes through the top of CT core I1A.
- Ensure the other end of the lead emerging from the <u>bottom</u> of C T core I1A is looped back and connected to leg "K" of the Current Transformer on Line 1

WARNING!

Never allow an open circuit between the two Current Transformers.

An open circuit will cause damage to equipment.

Repeat the procedure for Line 2 and Line 3.

Connect the rest the connections to the *ElNet Energy & Power Multimeter* by means of terminal connecto plugs.

CHAPTER 2 — Installation

Designation	Description	Remarks
V 1	Direct from Busbar1	Through a 6Amp fuse
V 2	Direct from Busbar2	Through a 6Amp fuse
V 3	Direct from Busbar3	Through a 6Amp fuse
Ν	Direct from Neutral Line	
I1A	From Current Transformer on Line1	Note the correct direction to insert the lead
I2A	From Current Transformer on Line2	Note the correct direction to insert the lead
Іза	From Current Transformer on Line3	Note the correct direction to insert the lead
~	Power 220 V AC	Bridged from V3
Ν	Neutral	Bridged from the neutral Line
	Earth/Ground	

Table 2-1 Connections

CHAPTER 3 — USING THE ElNet Energy & Power Multimeter

In this chapter you will find descriptions and functions of the front panel and the control buttons and how to use them.

3.1 — Front Panel

To operate the front panel

The Front Panel has a two line TEXT screen and 3 operating buttons located below the screen.

<u>All</u> readings are shown on the 2 X 16 text screen. How to obtain the readings is explained in detail in Chapter 5.

The Control Buttons and their functions are fully explained in Section 3-2.

Figure 3-1. Front Panel Control Buttons

To obtain Readings

All information contained in the Powermeter is viewed by navigating through a logical Hierarchy Menu. To arrive at each reading, follow a logical step-by-step procedure starting from Top Level and progress down to 2^{nd} Level, 3^{rd} Level etc.

To do this, look in the lowest level for the specific reading required, then go back up and start from the top Level for that reading.

CONTROL APPLICATIONS Ltd.

CHAPTER 3 — Using the ElNet Energy & Power Multimeter

Hierarchy of Menus

CHAPTER 3 — Using the **ElNet** Energy & Power Multimeter

Hierarchy of Menus Continued

Hierarchy of Menus Continued

3.2 — Control Buttons

Function of the Control Buttons

The *ElNet Energy & Power Multimeter* has three control buttons arranged below the display screen. These require slight finger pressure to click. The *User* and *Senior Electrical Engineer* use these Control Buttons to view readings and perform <u>all</u> the Set Up functions.

Figure 3-2. Control Buttons

CONTROL APPLICATIONS Ltd.

CHAPTER 3 — Using the ElNet Energy & Power Multimeter

In the event of a general power failure, the *ElNet Energy & Power Multimeter* returns to the last screen displayed.

CHAPTER 4 — PARAMETER CONFIGURATION & SETTINGS

In this chapter you will find instructions to set the minimum settings that are necessary to allow the *ElNet Energy & Power Multimeter* to function properly.

WARNING!

- The selection, installation and settings of the Current Transformer is the most vital and fundamental action required to ensure the accurate functioning of the *ElNet Energy & Power Multimeter*.
- It is essential to know the ratio of the Current Transformer being installed into the system in order to set the parameter for the Current Transformer correctly.
- All three main current Lines <u>MUST</u> have Current Transformers of the same ratio installed onto them.

4.1 — Settings for Current Transformer

Hierarchy Tree of Current Transformer Settings

Top Level — Configuration 2^{nd} Level — CT Configure 3^{rd} Level — Set CT Screen # 1 4^{th} Level —Set CT Screen # 2

To set or change settings for Current Transformer

NOTE!

The most important setting necessary for the proper functioning of the *ElNet Energy & Power Multimeter* is the Current Transformer setting.

1 From the Main Menu roll to Configuration

Configuration

Energy

CONTROL APPLICATIONS Ltd.

CHAPTER 4 — Parameter Configuration & Settings

The **Set Current Transformer** Screen #1 appears

Figure 4-1. Set Current Transformer Screen #1

5

The **Set Current Transformer** Screen # 2 appears

CONTROL APPLICATIONS Ltd. CHAPTER 4 — Parameter Configuration & Settings

4.2 — Phase Order Check

NOTE!

To avoid any problems arising from incorrect Voltage Connections or accidental reversal of Current Transformer Connections, it is necessary to perform a Phase Order Check before continuing.

Top Level — Configuration 2nd Level — Line Status 3rd Level — Check Line Status Volts Line 1,2 & 3 Check Line Status Current Line 1,2 & 3 Check Phase Order

To perform Line Status Check (Connection Check) & Phase Order Check

From the Main Menu roll to Configuration
Configuration
Energy
Click
Click
Roll to Line Status
Line Status
Set Time
A Click

The Line Status & Phase Order screen appears

Volt Line 1:OK Volt line 2:OK ↓

Figure 4-3. Check Volt & Current Connections

5 Roll to Volts Line1,2 & 3

6 Roll to Curr. Line1,2 & 3

Voltage and Current Messages

Table 4-1 Voltage and Current Messages

Message	Voltage	Current
ОК	Voltage present on Lines	Current present in Lines <u>and</u> synchronized with Voltage Lines
OPP	Not Applicable	Wired in incorrect direction
NO	No Voltage	No current

7 Roll to Phase Order

Figure 4-4. Check Phase Order

Phase Order Messages

Message	Voltage
OK	Correct Phase Order of Voltage Connections
OPP	Incorrect Phase Order i.e. Line 2 does not follow Line 1 and/or Line 1 does not follow Line3

Table 4-2 Phase Order Messages

4.3 — Clock Settings

Hierarchy Tree of Clock Settings

Top Level — Configuration 2^{nd} Level — Set Time 3^{rd} Level — Set Time Screen # 1 4^{th} Level — Set Time Screen # 2

To set Time

1 From the Main Menu roll to Configuration

2 Click 2 3 Roll to Set Time

CONTROL APPLICATIONS Ltd.

CHAPTER 4 — Parameter Configuration & Settings

4 Click

The **Set Time** Screen # 1 appears

Time 00:00:00 To Set Time ... 🚽

Figure 4-5. Set Time Screen # 1

5

The **Set Time** Screen # 2 appears

00:--:--Set Time

4.4 — Date Settings

Hierarchy Tree of Date Settings

Top Level — Configuration 2^{nd} Level — Set Date 3^{rd} Level — Set Date Screen # 1 4^{th} Level —Set Date Screen # 2

To set Date

Page 34 *ElNet* TEXT Energy & Power Multimeter

CONTROL APPLICATIONS Ltd.

4.5 — Filter Settings

All readings in the *ElNet Energy & Power Multimeter* are read and displayed every second. In a "noisy" system these readings would show wild fluctuations. Fluctuations can be "smoothed" out by applying Time Average Filters.

Time Average Filters utilizes the "Sliding Window" method. A calculation is made of the sum of a preset number of readings, divided by the same number to gives a new continuously moving average. This new calculated reading appears as the new reading every second

Recommended factory setting = 3 seconds.

CONTROL APPLICATIONS Ltd. CHAPTER 4 — Parameter Configuration & Settings

NOTE!

The Time Average Filter does not affect any internal calculations or accumulation of data.

Hierarchy Tree of Filter Settings

Top Level — Configuration 2nd Level — Set Filter 3rd Level — Set Voltage Filter Set Current Filter Set Power Filter Set Frequency Filter

To set Voltage, Current, Power, or Frequency Filters

All 4 Filter settings procedures are identical

1 From the Main Menu roll to Configuration

4

5 Roll to either Voltage, Current, Power, or Frequency Filters
CONTROL APPLICATIONS Ltd.

CHAPTER 4 — Parameter Configuration & Settings

The Set Filter screen appears

NOTE!

Filter settings can be set between 1 and 50 seconds

4.6 — Reset Energy Values

Hierarchy Tree of Reset Energy Values

Top Level — Configuration 2^{nd} Level — Technical

To Reset Energy Values

3 Roll to Technical

2

CONTROL APPLICATIONS Ltd.

CHAPTER 4 — Parameter Configuration & Settings

The Enter Command Code screen appears

If you overrun the code, continue to 999 and start again.

The Energy Reset screen appears for 1 second

Energy Reset.. Done !!

Figure 4-11. Energy Reset

In this chapter you will find instructions on how to obtain the readings that the *ElNet Energy & Power Multimeter* provides, e.g., Current, Voltage Power, Power Factor, Energy, and Harmonics.

5.1 — Current

Hierarchy Tree of Current displays

Top Level — General 2^{nd} Level — Current 3^{rd} Level — Current for Line 1 Line 2 & Line 3

To display Current for all 3 Phases

1 From the Main Menu roll to General

- 2 Click
- 3 Roll to Current

4

The Current Screen Appears

Current L1 ↓ 0.0 Amper

Figure 5-1. Current Screen

5 Roll to Current Line 2 and Line 3

5.2 — Current in Neurtal Line

By using Vector calculations the *ElNet Energy & Power Multimeter* calculates the Current in the Neutral Line.

To display Current in Neutral Line

Repeat Steps 1 to 5 as found in Section 5.1.

6 Roll to Current In Neutral line

5.3 — Voltage

Hierarchy Tree of Voltage displays

Top Level — General 2nd Level — Voltage 3rd Level — Voltage for Line 1 Line 2 & Line 3 Voltage between Line 1-2 Line 2-3 Line 3-1

To display Voltage for all 3 Phases and across Phases

1 From the Main Menu roll to General

General ← Power ↓

The Voltage Screen Appears

Figure 5-2. Voltage Screen

5 Roll to Voltage Line 2, Line 3 Voltage between Line 1-2 Line 2-3 Line 3-1

Parameter	Description	Units
L1	Voltage from Line1 to Neutral	Volts
L2	Voltage from Line2 to Neutral	Volts
L3	Voltage from Line3 to Neutral	Volts
L12	Voltage across Line1 and Line2	Volts
L23	Voltage across Line2 and Line3	Volts
L13	Voltage across Line1 and Line3	Volts

5.4 — Active Power (P)

2

3

Hierarchy Tree of Active Power displays

Top Level — Power 2nd Level — Active Power 3rd Level — Active Power for Line 1 Line 2 & Line 3 Active Power for All Lines

To display Active Power for all 3 phases

1 From the Main Menu roll to Power

4

The Active Power Screen Appears

Figure 5-3. Active Power Screen

5 Roll to Active Power Line 2, Line 3, ALL

Parameter	Description	
Р	Active Power for each Line	Watts
Q	Reactive Power for each Line	VAR
S	Apparent Power for each Line	VA
ΣΡ	Total Active Power for all 3 Lines	Watts
ΣQ	Total Reactive Power for all 3 Lines	VAR
ΣS	Total Apparent Power for all 3 Lines	VA
PF	Power Factor	

5.5 — Reactive Power (Q)

Hierarchy Tree of Reactive Power displays

```
Top Level — Power

2<sup>nd</sup> Level — Reactive Power

3<sup>rd</sup> Level —Reactive Power for Line 1 Line 2 & Line 3

Reactive Power for All Lines
```

To display Reactive Power for all 3 phases

1 From the Main Menu roll to Power

ℯ⅃

The ReActive Power Screen Appears

Figure 5-4. Reactive Power Screen

5 Roll to Active Power Line 2, Line 3, ALL

5.6 — Apparent Power (S)

Hierarchy Tree of Reactive Power displays

Top Level — Power 2nd Level — Apparent Power 3rd Level — Apparent Power for Line 1 Line 2 & Line 3 Apparent Power for All Lines

To display Apparent Power for all 3 phases

1 From the Main Menu roll to Power

4 Click

The Apparent Power Screen Appears

Figure 5-5. Apparent Power Screen

5 Roll to Apparent Power Line 2, Line 3, ALL

5.7 — Overall Power Factor and PF for each Phase

Hierarchy Tree of Power Factor displays

Top Level — General 2nd Level —Power Factor 3rd Level —Power Factor **Line 1 Line 2 & Line 3 ALL**

To display Power Factor for all 3 phases

1 From the Main Menu roll to General

The **Power Factor Screen** Appears

Figure 5-6. Power Factor Screen

5 Roll to Power Factor Line 2, Line 3, ALL

5.8 — Frequency

Hierarchy Tree of Frequency displays.

Top Level — General 2^{nd} Level — Frequency 3^{rd} Level — Frequency for Line 1 Line 2 & Line 3

To display Frequency for all 3 phases

1 From the Main Menu roll to General

2

3 Roll to Frequency

The Frequency Screen Appears

Figure 5-7. Frequency Screen

5 Roll to Frequency line1, Line 2, Line 3.

5.9 — Active Energy

Hierarchy Tree of Active Energy displays

Top Level — Energy 2nd Level — Active Energy 3rd Level — Active Energy for Line 1 Line 2 & Line 3 Active Energy for All Lines

To display Active Energy for all 3 phases

1 From the Main Menu roll to Energy

2

4 Roll to Active Energy

The Active Energy Screen Appears

Figure 5-8. Active Energy Screen

6 Roll to Active Energy Line 1, Line 2, Line 3, ALL

5.10 — Reactive Energy

Hierarchy Tree of Reactive Energy displays

Top Level — Energy 2nd Level — Reactive Energy 3rd Level — Reactive Energy for **Line 1 Line 2 & Line 3** Reactive Energy for **All Lines**

To display Reactive Energy for all 3 phases 1 From the Main Menu roll to Energy 2 Click 3 Roll to Reactive Energy Reactive Energy Apparent Energy 4 Click

The **ReActive Energy** Screen Appears

Figure 5-9. Active Energy Screen

5 Roll to Reactive Energy Line 2, Line 3, ALL

5.11 — Apparent Energy

Hierarchy Tree of Apparent Energy displays

```
Top Level — Energy

2<sup>nd</sup> Level — Apparent Energy

3<sup>rd</sup> Level — Apparent Energy for Line 1 Line 2 & Line 3

Apparent Energy for All Lines
```

To display Apparent Energy for all 3 phases

1 From the Main Menu roll to Energy

The Apparent Energy Screen Appears

App.	Energy	L1	↓
0.0	000	KVA	h

Figure 5-10. Apparent Energy Screen

5 Roll to Apparent Energy Line 2, Line 3, ALL

5.12 — Harmonics

NOTE!

Poor Harmonics could invoke a fine and can be improved by adding capacitors or simply switching a suspect appliance off and noting any improvement.

The *ElNet Energy & Power Multimeter* is capable of displaying Volt and Current Harmonics.

In addition, Total Harmonics Distortion (THD) for Volts and Current can also be displayed on the TEXT Screen.

5.12.1.— Voltage Total Harmonic Distortion (THD)

Hierarchy Tree of Voltage Total Harmonic Distortion displays

Top Level — Harmonics

2nd Level — Voltage THD

3rd Level — Voltage THD. % for Line 1, Line 2 & Line 3

To display Voltage Total Harmonic Distortion (THD)

2

3 Roll to Voltage THD

4 Click

The **THD** – **Voltage** Screen Appears

Figure 5-11. Voltage Total Harmonics Distortion Screen

5 Roll to THD Voltage for Line 2 and Line 3

5.12.2.— Current Total Harmonic Distortion (THD)

Hierarchy Tree of Current Total Harmonic Distortion displays

Top Level — Harmonics 2nd Level — Current THD 3rd Level —Current THD. % for **Line 1**, **Line 2 & Line 3**

To display Current Total Harmonic Distortion (THD)

- 2 Click
- 3 Roll to Current THD

4 Click

The THD –Current Screen Appears

5 Roll to THD Current % for Line 2 and Line 3

5.12.3.— Voltage Harmonics

Hierarchy Tree of Volt Harmonics displays

Top Level — Harmonics

2nd Level — Voltage Harmonics

```
3rd Level — Volt Harmonics from 1<sup>st</sup> to 32<sup>nd</sup> for Line 1,2 &3
```

To display Volt Harmonics From 1st to 32nd

3 Roll to Voltage Harmonics

2

The Voltage Harmonics Screen Appears

Figure 5-13. Volt Harmonics from 1st to 32nd Screen

5.12.4.— Current Harmonics

Hierarchy Tree of Current Harmonics displays

Top Level — Harmonics 2nd Level — Current Harmonics 3rd Level — Current Harmonics from 1st to 32nd Line 1,2 &3

To display Current Harmonics From 1st to 32nd

The Current Harmonics Screen Appears

Figure 5-14. Current Harmonics from 1st to 32nd Screen

MODBUS Protocol

The *ElNet Energy & Power Multimeter* has a serial interface port allowingt direct interface with an external communication network supporting the MODBUS Protocol.

MODBUS is an Industry Standard, widely known and commonly used communications protocol. Using MODBUS provides communication between a PC and up to 247 Powermeter slaves on a common line- the PC being the **master** and the Powermeters the **slaves.** The PC initiates the transaction (either a query or broadcast) and the Powermeter/s responds. Powermeters respond to the **master** Pc's request, but will not iniate any transmission on its own. The PC sends a single Query transaction and the Powermeter responds in a single response frame and is capable of only one query and one response at a time

6.1 — MODBUS Framing

6.1.1.— RTU Transmission Mode

MODBUS uses the standard Remote Terminal Unit (RTU) transmission mode. RTU mode sends data in <u>8-bit binary Even parity</u> or <u>8-bit binary NO parity</u> data format. For the *ElNet Energy & Power Multimeter* to successfully communicate, choose one in the communication Set Up.

Field	No. of bits
Start bit	1
Data bits	8
Parity	1
Stop bit	1

Table 6-1 RTU Data Format6.1.2 — The RTU Frame Format

Query and response information is sent in frames. Each frame contains:

Address

Function (See Section 6.1.4 for descriptions of functions),

Data

Check.

Address	Function	Data	Check
8 bits	8 bits	N * 8 bits	16 bits

Table 6-2 R T U Message Frame Format

If the receiving device (Powermeter) detects a time laps of <u>five</u> characters, then it will assume the message is incomplete and will flush the frame. The device (Powermeter) then assumes that the next byte received will be an address. The maximum query and response message length is 256 bytes includuing check characters.

6.1.3 — Address Field

Each Powermeter is designated in a network system by a user assigned address. The Address can be any number between 1 and 247. The Powermeter will only respond to it's own specificically assigned address.

6.1.4 — Function Field

The function field contains the code that tells the Powermeter what action to perform.

The *ElNet Energy & Power Multimeter* uses and responds to four standard Message Format Functions.

Function 03 Function 04 Function 06 Function 16

Function	Meaning in MODBUS	Action
Function 03	Read holding register	Obtain data from Powermeter (Read register)
Function 04	Read input register	Obtain data from Powermeter (Read register)
Function 06	Preset single register	Transmit data to Powermeter (Write single register)
Function 16	Preset multiple register	Transmit data to Powermeter (Write multiple registers)

Table 6-3 Function Codes

6.1.5 — Data Field

The Data field contains the body of the message and contains instructions from the PC **master** to the Powermeter **slave** to perform a particuler action or respond to a query. The reply message from the Powermeter will be information contained in one or more of it's registers.

6.1.6 — Check Field

The error check field contains the result of Cyclical Redundancy Check (CRC). The start of the message is ignored in calculating the CRC.

For more detailed information on CRC, refer to the MODBUS Protocol Reference Guide.

6.2 — Registers for *ElNet* Energy & Power Multimeter

The *ElNet Energy & Power Multimeter* is capable of supporting either Function 03 or Function 04 Message Format(See Table 1-3). In a reply to a query from the PC **master** for a reading from a particular field, the response from the Powermeter can be either in Format 03 or Format 04 but will depend on which Format the qeuery was originally sent.

The difference is significant because by using Function 03 the ELNet will only send the INTEGER part of the field value requested and the PC **master** will only display the INTEGER part of the field value.

Function 04, on the other hand, is capable of sending two separate halves of the full FLOAT requested information (each half contained in a separate register). Then it is the task of the PC **master** to merge the two halves into a full FLOAT reply. (For more detailed information See IEEE Standard 754 Floating-Point).

E.G. 1 If the user's PC **master** supports Function 03, then the reply will contain the INTEGER part of the field only.

The PC **master** requests the Voltage from Line1, and the actual Voltage in that field is 230.5 Volts.

Function 03 will respond with the INTEGER only i.e. 230V.

E.G. 2 If the user PC **master** supports Function 04, then the reply will contain the information stored in the two registers assigned to that field and will contain the full, accurate reply.

The PC master requests the Voltage from Line1, and the actual Voltage in that field is 230.5 Volts.

Function 04 will respond with a composite reply of both register 1 and 2 giving the full FLOAT value (in IEEE Format) from that field i.e. 230.5V.

No	MODBUS Register	Field Description	Туре
1	1-2	Voltage Line 1	Read
2	3-4	Voltage Line 2	Read
3	5-6	Voltage Line 3	Read
4	7-8	Voltage between line 1 and Line 2	Read
5	9-10	Voltage between line 2 and Line 3	Read
6	11-12	Voltage between line 3 and Line 1	Read
7	13-14	Current in Line 1	Read
8	15-16	Current in Line 2	Read
9	17-18	Current in Line 3	Read
10	19-20	Active Power Line 1	Read
11	21-22	Active Power Line 2	Read
12	23-24	Active Power Line 3	Read
13	25-26	Combined Active Power Line 1+2+3	Read
14	27-28	Apparent Power Line 1	Read
15	29-30	Apparent Power Line 2	Read
16	31-32	Apparent Power Line 3	Read
17	33-34	Combined Apparent Power Line 1+2+3	Read
18	35-36	Reactive Power Line 1	Read
19	37-38	Reactive Power Line 2	Read
20	39-40	Reactive Power Line 3	Read
21	41-42	Combined Reactive Power Line 1+2+3	Read
22	43-44	Power Factor Line 1	Read
23	45-46	Power Factor Line 2	Read
24	47-48	Power Factor Line 3	Read

25	49-50	Combined Power Factor for Line 1+2+3	Read
26	51-52	Frequency Line 1	Read
27	53-54	Frequency Line 2	Read
28	55-56	Frequency Line 3	Read
29	57-58	Current Neutral Line	Read
30	59-60		
31	61-62		
32	63-64		
33	65-66		
34	67-68		
35	69-70		
36	71-72		
37	73-74		
38	75-76		
39	77-78		
40	79-80	Active Energy	Read
41	81-82	Reactive Energy	Read
42	83-84	Apparent Energy	Read
43	85-86		Read
44	87-88	Time from 01 01 2000 in seconds	Read
45	89-90	ADDRESS	Read
46	91-92	BAUD RATE	Read
47	93-94	PARITY	Read
48	95-96	Current Transformer Ratio	Read/Write
49	97-98	Timed average Voltage	Read/Write
50	99-100	Timed average Current	Read/Write

51	101-102	Timed average Power	Read/Write
52	103-104	Timed avaerge Frequqncy	Read/Write
53	105-106	THD for Volts Line 1	Read
54	107-108	THD for Volts Line 2	Read
55	109-110	THD for Volts Line 3	Read
56	111-112	THD for Current Line 1	Read
57	113-114	THD for Current Line 2	Read
58	115-116	THD for Current Line 3	Read
59			
60	119-120	Active Power Line 1	Read
61	121-122	Active Power Line 2	Read
62	123-124	Active Power Line 3	Read
63	125-126	Reactive Power Line 1	Read
64	127-128	Reactive Power Line 2	Read
65	129-130	Reactive Power Line 3	Read
66	131-132	Apparent Power Line 1	Read
67	133-134	Apparent Power Line 2	Read
68	135-136	Apparent Power Line 3	Read
		1 1 1 2	
301	601-602	1 st Harmonics for Volts Line 1	Read
302	603-604	2 nd Harmonics for Volts Line 1	Read
₩	₩	Ų	Ų
331	661-662	31 st Harmonics for Volts Line 1	Read
332	663-664	32 nd Harmonics for Volts Line 1	Read
333	665-666	1 st Harmonics for Volts Line 2	Read

ElNet TEXT Energy & Power Multimeter Page 67

334	667-668	2 nd Harmonics for Volts Line 2	Read
Ų	Ų	Û	\Downarrow
363	725-726	31 st Harmonics for Volts Line 2	Read
364	727-728	32 nd Harmonics for Volts Line 2	Read
365	729-730	1 st Harmonic for Volts Line 3	Read
366	731-732	2 nd Harmonics for Volts Line 3	Read
₩	Ų	Ų	Ų
395	789-790	31 st Harmonics for Vots Line 3	Read
396	791-792	32 nd Harmonics for Volts Line 3	Read
397	793-794	1 st Harmonics for Current Line 1	Read
398	795-796	2 nd Harmonics for Current Line 1	Read
Ų	Ų	Ų	\Downarrow
427	853-854	31 st Harmonics for Current Line 1	Read
428	855-856	32 nd Harmonics for Current Line 1	Read
429	857-858	1 st Harmonics for Current Line 2	Read
430	859-860	2 nd Harmonics for Current Line 2	Read
₩	Ų	Û	\Downarrow
459	917-918	31 st Harmonics for Current Line 2	Read
460	919-920	32 nd Harmonicsfor Current Line 2	Read
461	921-922	1 st Harmonics for Current Line 3	Read
462	923-924	2 nd Harmonics for Current Line 3	Read
Ų	Ų	Ų	Ų
491	981-982	31 st Harmonics for Current Line 3	Read
492	983-984	32 nd Harmonics for Current Line 3	Read

Page 68 *ElNet* TEXT *Energy & Power Multimeter*

Table 6-4 Registers

6.3 — Communication Connections

The *ElNet* Energy & Power Multimeter communicates through RS485. The connections can be seen from the front, (bottom left) and are made by means of the connectors provided.

Figure 6-1. Communication Connections

Pin Designation	Description
COM – 1	– of RS485
COM + 2	+ of RS485
ĽĻ.	Earth/Ground

Table 6-5 Connections

64 — Communication Settings

To enable the *User* to connect the *ElNet Energy & Power Multimeter* to a PC **master** computer for successful communications, the Communication Setup parameters of both must match; i.e. the port of the PC **master** and the configuration settings of the Powermeter.

Address Baud Rate Parity Stop Bit

6.4.1 — Address

Each Powermeter in a communication system must have it's own unique address.

Because the *ElNet Energy & Power Multimeter* works on MODBUS, the available addresses are from '1' to '31'

Hierarchy Tree of Address Setup

Top Level — Configuration 2^{nd} Level — Communication 3^{rd} Level — Address

To set up Address

1 From the Main Menu roll to Configuration

6.4.2 — Baud Rate

The Baud Rate is the communication speed in Bits per second (BPS) that the *ElNet Energy & Power Multimeter* communicates with the PC **master**. The better the communication line Quality, the faster the communications may be.

If the communication line is routed through a "noisy" environment, it may be necessary to decrease the Baud Rate

Available Baud Rates for the *ElNet* Energy & Power Multimeter: -

300	bps
600	bps
1200	bps
2400	bps

4800 bps9600 bps19200 bps38400 bps

Hierarchy Tree of Baud Rate Setup

Top Level — Configuration 2^{nd} Level — Communication 3^{rd} Level — Baud Rate

To set Baud Rate

1 From the Main Menu roll to Configuration

6.4 3 — Parity

The choices of parity are either EVEN or NONE.

Hierarchy Tree of Parity Setup

Top Level — Configuration 2^{nd} Level — Communication 3^{rd} Level — Parity

To set Parity

1 From the Main Menu roll to Configuration

2

3 Roll to Communication

The Set Parity Screen appears

Parity=XXXX Press ← To Set

Figure 6-4. Set Parity Screen

6.4.4 — Stop Bit

The choice of parity is either 1 or 2.

Hierarchy Tree of Stop Bit Setup

Top Level — Configuration 2^{nd} Level — Communication 3^{rd} Level — Stop Bit

To set Stop Bit

1 From the Main Menu roll to Configuration

Click

2

3 Roll to Communication

Communication -Information

The Set Stop Bit Screen appears

Figure 6-5. Set Stop Bit Screen

CHAPTER 7 — Specifications

Item	Description	
Power requirements	110/230VAC,60/50 Hz, 30VA	
Dimensions	(HxWxD) 96x159x57 mm	
Shipping Weight	450 gr	
Voltage limits	1000VAC	
Current limits	50A	
Enclosure material	ABS + Antiflame	
Display	Liquid Crystal 2 X 16	
Operating temperature	-20 - + 60 C	
Storage temperature	-20 - + 80 C	
Humidity	0- 90 RH%	
Voltage input terminals	VL – E10 1708	
Communication port	RS485	
Mounting	Standard DIN Rail	
Overload Protection	1 Amp Fuse	

All technical specifications are subject to change without notice.

Appendix A — Installation & Configuration Check List <u>INSTALLATION CHECK LIST</u>

Description	Date	Signature
Check contents of packaging		
Remove from packaging		
Mount Multimeter		
Connect Multimeter power supply		
Connect 3 Current Transformer		
Connect 3 Voltage lines		
Connect Neutral line		
Set parameter for Current Transformer		
Connect Communication lines		

Appendix A Table - Installation & Configuration Check List

Appendix B — List of Illustrations & Tables <u>LIST OF ILLUSTRATIONS</u>

- Figure 2-1. Mount onto DIN Rail
- Figure 2-3. Schematic Wiring Diagram
- Figure 3-1. Front Panel
- Figure 3-2. Control Buttons
- Figure 4-1. Set Current Transformer Screen # 1
- Figure 4-2. Set Current Transformer Screen # 2
- Figure 4-3. Check Volt & Current Connections
- Figure 4-4. Check Phase Order
- Figure 4-5. Set Time Screen # 1
- Figure 4-6. Set Time Screen # 2
- Figure 4-7. Set Date Screen # 1
- Figure 4-8. Set Date Screen # 2
- Figure 4-9. Set Filter Screen
- Figure 4-10. Enter Command Code
- Figure 4-11. Energy Reset
- Figure 5-1. Current Screen
- Figure 5-2. Voltage Screen
- Figure 5-3. Active Power Screen
- Figure 5-4. Reactive Power Screen
- Figure 5-5. Apparent Power Screen
- Figure 5-6. Power Factor Screen
- Figure 5-7. Frequency Screen
- Figure 5-8. Active Energy Screen
- Figure 5-10. Apparent Energy Screen

Figure 5-11.Voltage Total Harmonics Distortion Screen Figure 5-12.Current Total Harmonics Distortion Screen Figure 5-13.Volt Harmonics from 1st to 32nd Screen Figure 5-14.Current Harmonics from 1st to 32nd Screen Figure 6-11. Communication Connections Figure 6-12. Set Address Screen Figure 6-13. Set Baud Rate Screen Figure 6-14. Set Parity Screen Figure 6-15. Set Stop Bit Screen

LIST OF TABLES

Table 2-1 Connections Table 6-1 RTU Data Format Table 6-2 R T U Message Frame Format Table 6-3 Function Codes Table 6-4 Registers Table 6-5 Connections

Appendix A Table - Installation & Configuration Check List

INDEX

A

AC power, 7 address, 10, 61, 62, 70 Apparent Energy, 53

B

Baud Rate, 72, 73 Building Management Systems, 4

С

C.O.C. 5 cables, 7, 12 carton, 13 Certificate Of Compliance, 5 Check Field, 63 Check List, 6, 79 children, 7 Clock Settings, 32 comments, 9, 10 commitment, 10 Communications, 6, 60 conductors., 14 Configuration, 26 consumption, 4 control buttons, 19 cracks, 7 CT core, 16 Current, 4, 39 Current Transformer, 26, 27

D

damage, 7 Data Field, 63 Date Settings, 34 defective, 9 DIN Rail, 4, 14 Disclaimer, 10

F

Filter Settings, 35 fire, 7 Flash Memory, 4 format, 61 Frequency, 48 Front Panel, 19 Function Field, 61 functions, 24

Η

Harmonics, 4, 54 hazardous voltages, 12 Hierarchy Tree, 20

I

illustrations, 80 improvements, 10 injury, 7 integer, 63, 64

liability, 8 Liquid Crystal display, 5 List of Tables, 81

Μ

mechanical mounting, 14 minimum settings, 26 MODBUS, 60 moisture, 7

Ν

natural disasters, 8

0

open circuit, 17

Ρ

packaging, 12, 79 Parity, 66, 74 Phase Order Check, 29 Power Factor, 47 power failure, 25 power source, 7, 12 precautions, 7

R

ratio, 26 registers, 63, 65 repair, 9 replacement, 9

S

safety information, 7, 12 service, 9 settings Current Transformer, 27 signs of wear, 7 Specifications, 6, 78 static free, 13 Stop Bit, 61, 70, 76

Т

terminal connector, 17 test certificate, 5 Text Screen, 19 Total Harmonics Distortion, 54, 55, 56

V

void the warranty, 9 Voltage, 4, 41

W

warranty, 8 warranty period, 9